A geometric approach to the price of anarchy in nonatomic congestion games
نویسندگان
چکیده
We present a short, geometric proof for the price-of-anarchy results that have recently been established in a series of papers on selfish routing in multicommodity flow networks and on nonatomic congestion games. This novel proof also facilitates two new types of theoretical results: On the one hand, we give pseudo-approximation results that depend on the class of allowable cost functions. On the other hand, we derive stronger bounds on the inefficiency of equilibria for situations in which the equilibrium costs are within reasonable limits of the fixed costs. These tighter bounds help to explain empirical observations in vehicular traffic networks. Our analysis holds in the more general context of nonatomic congestion games, which provide the framework in which we describe this work.
منابع مشابه
The Impact of Collusion on the Price of Anarchy in Nonatomic and Discrete Network Games
Hayrapetyan, Tardos andWexler recently introduced a framework to study the impact of collusion in congestion games on the quality of Nash equilibria. We adopt their framework to network games and focus on the well established price of anarchy as a measure of this impact. We rst investigate nonatomic network games with coalitions. For this setting, we prove upper bounds on the price of anarchy f...
متن کاملWeighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness
We characterize the price of anarchy in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that weigh...
متن کاملX Weighted Congestion Games: The Price of Anarchy, Universal Worst-Case Examples, and Tightness
We characterize the price of anarchy (POA) in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that...
متن کاملPrice of Anarchy for Non-atomic Congestion Games with Stochastic Demands
We generalize the notions of user equilibrium and system optimum to nonatomic congestion games with stochastic demands. We establish upper bounds on the price of anarchy for three different settings of link cost functions and demand distributions, namely, (a) affine cost functions and general distributions, (b) polynomial cost functions and general positive-valued distributions, and (c) polynom...
متن کاملNetwork Games with Atomic Players
We study network games with atomic players that can split their flow. Some errors in the literature led to incorrect bounds on the price of anarchy of these games. We correct past results with a new bound for arbitrary sets of cost functions. In the case of affine cost functions, this bound implies that the price of anarchy is at most 3/2 and the cost of an equilibrium is not larger than that o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Games and Economic Behavior
دوره 64 شماره
صفحات -
تاریخ انتشار 2008